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Abstract
Taste buds, the sensory organs for taste, have been described as arising solely from the

surrounding epithelium, which is in distinction from other sensory receptors that are known

to originate from neural precursors, i.e., neural ectoderm that includes neural crest (NC).

Our previous study suggested a potential contribution of NC derived cells to early immature

fungiform taste buds in late embryonic (E18.5) and young postnatal (P1-10) mice. In the

present study we demonstrated the contribution of the underlying connective tissue (CT) to

mature taste buds in mouse tongue and soft palate. Three independent mouse models

were used for fate mapping of NC and NC derived connective tissue cells: (1) P0-Cre/R26-
tdTomato (RFP) to label NC, NC derived Schwann cells and derivatives; (2) Dermo1-Cre/
RFP to label mesenchymal cells and derivatives; and (3) Vimentin-CreER/mGFP to label

Vimentin-expressing CT cells and derivatives upon tamoxifen treatment. Both P0-Cre/RFP
and Dermo1-Cre/RFP labeled cells were abundant in mature taste buds in lingual taste

papillae and soft palate, but not in the surrounding epithelial cells. Concurrently, labeled

cells were extensively distributed in the underlying CT. RFP signals were seen in the major-

ity of taste buds and all three types (I, II, III) of differentiated taste bud cells, with the neuro-

nal-like type III cells labeled at a greater proportion. Further, Vimentin-CreER labeled cells

were found in the taste buds of 3-month-old mice whereas Vimentin immunoreactivity was

only seen in the CT. Taken together, our data demonstrate a previously unrecognized origin

of taste bud cells from the underlying CT, a conceptually new finding in our knowledge of

taste bud cell derivation, i.e., from both the surrounding epithelium and the underlying CT

that is primarily derived from NC.
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Introduction
Sensory receptors, as part of the peripheral nervous system, are known to arise from neuro-
genic ectoderm that includes the neural tube, neural crest (NC) or ectodermal placodes [1, 2].
Thus, receptor organs, in general, have neural progenitors that migrate and differentiate locally
to specific receptors. In contrast, taste bud cells have been described on the basis of anatomical
studies [3, 4] and transgenic phenotype analyses [5, 6] as arising solely from the local epithe-
lium [7]. However, the heterogeneity of structural (types I, II, III, IV) [8–10] and functional
(epithelial-, neuronal-, and glial-like) [11–14] cell features indicate distinct lineages of taste
bud cells [15].

The use of a tissue- or inducible tissue-specific Cre/loxP recombinase system has signifi-
cantly advanced our knowledge pertaining to taste bud precursor/progenitor cell constitutions
and how specific tissues/cell populations regulate the formation and maintenance of taste
organs. Cell fate mapping using an inducible Cre/loxP system driven by a sonic hedgehog pro-
moter (Shh-CreER) demonstrated that Shh-expressing embryonic taste papilla placodes [16]
and basal cells of taste buds [17] are precursors of differentiated taste cells. With a Gli1-CreER
mouse, populations of hedgehog-responding and Gli1 labeled progeny cells in basal epithelium
and connective tissue core of the fungiform papilla were shown to contribute to maintenance
of fungiform papillae and taste buds [18]. Moreover, use of an Lgr5-CreERmouse model pro-
vided evidence that Lgr5-expressing cells in the basal region of taste buds are precursors of
taste bud cells [19]. Furthermore,Wnt1-Cre, a well characterized and widely used mouse
model for labeling NC cells and their derivatives [20], has been a useful tool in demonstrating
the contribution of NC to tongue mesenchyme and the important roles of NC derived cells in
tongue myogenesis and morphogenesis [21].

In a study to demonstrate that taste bud cells are derived from the local surrounding epithe-
lium, an inducible Cre driven by the promoter of K14 (K14-CreER) was used and Cre-labeled
cells were analyzed in postnatal mice [5]. K14 is a basal epithelial cell marker, and K14-CreER
labeled a population, but not all, of taste bud cells. Even after 1-month of pulse chase period
that goes beyond the turnover cycle of all taste bud cells [22], only a subset of taste bud cells
were labeled. Moreover, it was shown in the report that absence of taste bud labeling was fre-
quently observed concurrently with the labeling of surrounding epithelial cells. The data
strongly suggest other source(s) of progenitor/stem cells for taste bud formation and renewal.
In mouse tongue and soft palate, taste buds reside in the epithelium that overlys a layer of loose
connective tissue (lamina propria). Therefore, taste buds are structurally surrounded by both
local epithelium and underlying connective tissue (CT) which is potentially another precursor
source.

Our recent findings using DNA recombination-based cell lineage tracing studies in P0-Cre
andWnt1-Cremice [23] suggest a potential NC contribution to early immature taste buds at
embryonic day 18.5 (E18.5) and postnatal day 1–10 (P 1–10). However, the difference was pro-
found in the proportions of P0-Cre (abundant) andWnt1-Cre (sparse) labeled cells in early
taste buds. Further evidence is needed to confirm this significant finding and questions remain
about (1) whethermature taste bud cells are derived from the underlying mesenchymal CT; (2)
whether underlying CT contributes to specific taste cell type(s); and (3) whether there are
stem/progenitor cells in the underlying CT that continuously contribute to the renewal of
mature taste buds.

To address these questions, we used three independent mouse lines for the present study:
P0-Cre which labels a population of NC cells, Schwann cells and a small portion of cortex that
are derived from the periventricular cells [24–26]; Dermo1-Cre (Twist2-Cre) [27], in which Cre
recombinase is driven by the endogenous promoter of Dermo1 that is expressed in the
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mesenchymal cells [28]; and Vimentin-CreER with an inducible Cre driven by the endogenous
promotor of Vimentin [29], that is exclusively expressed in the mesenchyme and mesenchymal
CT in embryonic [30] and adult mouse tongue. We found labeled cells abundantly distributed
in mature taste buds concurrently with the distribution in underlying CT, but not in the sur-
rounding epithelium. Our data support a new concept, i.e., taste bud cells are derived from
both the underlying CT and the surrounding epithelium. This new finding brings a better
understanding of progenitor sources of taste bud formation and renewal.

Materials and Methods

Animals
The use of animals was approved by The University of Georgia Institutional Animal Care and
Use Committee and was in compliance with the National Institutes of Health Guidelines for
care and use of animals in research.

The hemizygous P0-Cremouse line [26], C57BL6J-Tg(P0-Cre)94Img (ID148), was provided
by CARD, Kumamoto, Japan. Dermo1-Cre (B6.129X1-Twist2tm1.1(cre)Dor/J) [27] was purchased
from Jackson Laboratory (Stock#008712). Vimentin-CreER was generated by Dr. Schwabe
[29]. P0-Cre and Dermo1-Cremice were bred with homozygous R26-tdTomato (RFP) reporter
mice (B6.Cg-Gt(ROSA)26Sortm14(CAG-tdTomato)Hze/J, Jackson Lab, Stock #007914). Vimentin-
CreERmice were bred with cell membrane-targeted, two-color fluorescent Cre reporter allele
(RosamTom/mGFP, Gt(ROSA)26Sortm4(ACTB-tdTomato,-EGFP)Luo/J, Jackson Lab, Stock#007676).

PCR genotyping was conducted to detect Cre, RFP and GFP. In brief, DNA from the tail
tissue was extracted with 50 mM sodium hydroxide at 98°C for 30 min and neutralized with
Tris-HCl. PCR amplification was carried out with diluted DNA (1:20) under the conditions of
denaturation at 94°C for 5 min followed by annealing at 58–69°C for 30 s and extension at
72°C for 30 s; this cycle was repeated 40 times. PCR products were visualized in 2% agarose
gel electrophoresis.

Male and female mice were grouped together because no apparent difference was observed
in the distribution of labeled cells between two genders. Cre negative littermates served as
controls.

Tissue collection
Postnatal P0-Cre/RFPmice at different stages were used for tissue collections, i.e., 2 weeks
when mature taste buds are developing (maturing stage); 4 weeks when taste buds are mature
(mature stage); 8 weeks young adult and 16 weeks mature adult when taste bud cells undergo
continuous turnover for the maintenance of proper function of taste (turnover stage). Adult
(3–4 months) Dermo1-Cremice were used. Vim-CreER activity was induced by 4 intraperito-
neal injections of tamoxifen (0.08 mg/g body weight dissolved in corn oil, administered every
3–4 days) to induce cell membrane-localized green fluorescence (mGFP) in Vimentin express-
ing cells and derived cells in adult mice. Tissues from 3-month-old mice were collected 2 days
after the last tamoxifen injection, i.e., 12 days after the first tamoxifen injection.

Mice were euthanized with CO2 followed by cervical dislocation. Following transcardial per-
fusion with warm 0.1 M phosphate buffered saline (PBS) solution, warm 2% paraformaldehyde
(PFA) in PBS (pH 7.4) and cold 2% PFA, the whole tongue and soft palate were collected and
post-fixed in 2% PFA in PBS at 4°C for 3–5 hr, then transferred to 30% sucrose in 0.1 M PBS at
4°C for approximately 48 hr. For the double immunolabeling of Vimentin and Ki67, fresh tis-
sues were collected immediately after euthanization.

The whole tongue was dissected into the following pieces: two halves (from lateral edge to
the midline of median furrow) of the anterior 2/3 oral tongue containing fungiform papillae
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and taste buds, two lateral edges of the posterior oral tongue where foliate papillae and taste
buds are located, and tissue containing the single circumvallate papilla in the mid-line of the
border between the oral and pharyngeal tongue. The tissues were embedded in O.C.T. com-
pound (Tissue Tek) and frozen for cryostat sectioning at different orientations: sagittal for fun-
giform and foliate taste bud tissues, and transverse for circumvallate tissues. Soft palate tissues
were oriented for sagittal sections. Serial (fungiform and soft palate) and neighboring (circum-
vallate and foliate) sections were cut at 5-μm thickness, mounted onto charged slides and pro-
cessed further for immunohistochemistry.

Immunohistochemistry
Primary antibodies used were: α-Gustducin (1:1000, sc-395, Santa Cruz Biotechnology, TX),
GFP (1:500, Life Technologies, NY), Keratin 8 (Krt8) (1:1000, TROMA-I, Developmental Stud-
ies Hybrydoma Bank, IA), Ki67 (1:200, ab16667, ABCAM, MA), NTPDase II (1:1000, Centre
de recherché du CHUL Rhumatologie-Immunologie, Québec, Canada), SNAP-25 (1:5000,
S9684, Sigma-Aldrich, MO), and Vimentin (1:1000, AB5733, EMDMillipore, MA). Slides
without primary antibody treatment were used as controls.

In brief, fungiform, foliate, circumvallate and soft palate tissue sections were air dried for 1
hr at room temperature and rehydrated in 0.1 M PBS. Blocking of nonspecific staining was car-
ried out by incubation with 10% normal donkey serum in PBS containing 0.3% Triton X-100
(Sigma, St. Louis, MO) for 30 min. Then the sections were incubated with primary antibody in
the carrier solution (1% normal donkey serum, 0.3% Triton X-100 in PBS) overnight at 4°C.
Following rinsing in 0.1 M PBS, sections were incubated in Alexa Fluor1 488 (for GFP) or 647
(for all the other markers)-labeled secondary antibody (1:500, Invitrogen, Eugene, OR) for 1 hr
at room temperature. Sections were rinsed with PBS and counterstained with DAPI (200 ng/ml
in PBS) for 10 min. After thorough rinsing in PBS, the slides were air dried and cover slipped
with Prolong1 Gold antifade mounting medium (Invitrogen, Eugene, OR). The sections were
analyzed under light microscope (EVOS FL, Life Technologies). Co-localization of RFP and
pan- or type-specific taste cell markers (Krt8, NTPDaseII, αGustducin, SNAP25) was con-
firmed and photographed using a laser scanning confocal microscope (Zeiss LSM 710 and
510).

Quantification of P0-Cre labeled taste bud cells
Quantitative analyses were made in P0-Cre/RFP tissues to calculate: (1) the proportion of RFP+

taste bud cells in fungiform papillae at different stages (2, 4, 8 and 16 weeks); (2) the proportion
of RFP+ cells in foliate and circumvallate taste buds at week 8; and (3) the proportion of RFP+

cells in different taste cell types in fungiform, foliate and circumvallate taste buds at week 8.
Taste bud cells labeled by bright red fluorescence protein (RFP+), or/and Krt8, α-Gustducin,
SNAP25 immunoproducts were counted. Only cells with a clear nucleus labeled by DAPI were
included.

Fungiform taste papillae have a patterned array in the anterior oral tongue, and each papilla
contains a single taste bud that may be tracked in serial sections. Serial sagittal sections at 5-μm
thickness were collected from the anterior half of the oral tongue (from lateral edge to the mid-
line of median furrow) at 2, 4, 8 and 16 weeks (n = 3 mice per stage). Sections were immunor-
eacted with a pan taste cell marker, Krt8. Individual taste buds were tracked in serial sections
and taste buds with all sections available for counting were included for further analysis. An
EVOS FL multichannel fluorescence microscope and software were used for the quantification
by one investigator. Krt8 signals were used for marking the boundary of differentiated taste
bud cells on each section. The total number of DAPI stained nuclei in a Krt8+ taste bud in all
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sections was determined for each bud, and described as the “cell profile” number of a taste bud.
In the same manner, RFP+ taste bud cells, each with a clear nucleus, were also quantified in all
sections and totaled for each taste bud. The percentage of P0-Cre labeled RFP+ taste bud cell
profiles was obtained by dividing the total RFP+Krt8+ taste bud cell profile number by the total
Krt8+ taste bud cell profile number per taste bud.

Taste buds in the foliate and circumvallate papillae are numerous and close to each other,
making individual taste buds difficult to track. Therefore, the overall numbers of total
RFP+Krt8+ taste bud cell profiles and total Krt8+ taste bud cell profiles in all taste buds on a
section were quantified. The proportion of RFP+ taste bud cells was represented by the per-
centage of RFP+Krt8+ relative to Krt8+ taste cell profile numbers.

For the proportion of RFP+ taste bud cell types, the RFP+ type II (α-Gustducin+) and RFP+

type III (SNAP25+) taste cells were quantified, and the percentage was calculated relative to
total RFP+ taste bud cells, or total α-Gustducin+ type II or SNAP25+ type III cells. Type I cells
(NTPDaseII+) comprised the majority of taste bud cells, and individual NTPDaseII− cells were
difficult to identify. Therefore, the percentage of RFP+ type I cells was extrapolated based on
the quantification data for type II and III cells.

Statistical Analysis
The percentages of the subset of P0-Cre labeled RFP+ taste bud cells relative to total Krt8+ taste
bud cells in fungiform papillae are presented as means ± standard derivation (�x ± SD) and
illustrated in Fig 1E and 1F (diamonds within boxes). Also, the percentages of the subset of
P0-Cre labeled RFP+ taste bud cells relative to total Krt8+ taste bud cells in fungiform papillae
at different stages were plotted as median ± percentile in order to illustrate the distribution of
percentages (Fig 1F). One-way analysis of variance (ANOVA) was used to evaluate statistical
difference across groups. A P-value less than 0.05 is taken as statistical significance.

Results

Abundant distribution of P0-Cre/RFP labeled cells in taste buds and
underlying connective tissue in the tongue and soft palate

P0-Cre/RFP labeled cells were sustained inmature taste buds in young adult mice. To
map the fate of P0-Cre/RFP labeled cells inmature taste buds, tongue and soft palate, tissues
were collected in young adult (8-week old) P0-Cre/RFPmice. Taste bud cells in all three types
of lingual taste papillae, i.e., fungiform, foliate, and circumvallate, and in soft palate were
labeled by a pan-taste cell marker, Krt8. No RFP+ cells were seen in the epithelium or connec-
tive tissues (CT) of tongue or soft palate in the Cre-negative littermates (S1 Fig).

In the epithelium of the tongue and soft palate, RFP+ cells labeled by P0-Cre were frequently
seen in mature taste buds in all three types of lingual taste papillae, i.e., fungiform (Fig 1A), foli-
ate (Fig 1B) and circumvallate (Fig 1C), and in the soft palate (Fig 1D). The RFP signals in the
structurally recognized taste buds were co-localized with the pan-taste cell marker Krt8. Signif-
icantly, RFP+ cells were not seen in the lingual and palatal epithelium outside of the taste buds,
i.e., neither in the epithelial cells that immediately surround taste buds (Fig 1A, arrowheads)
nor in between-papilla lingual or between-bud palatal epithelium (S2 Fig arrowheads).

In the CT of the tongue and soft palate, RFP+ cells were extensively distributed, more
densely in the core of taste papillae and lamina propria of the tongue and soft palate (Fig 1A–
1D, short arrows). In contrast, striated muscle cells, known as mesodermal derivatives, were
not RFP+ (S2 Fig Fungiform, arrows). Compared to RFP labels in tongue lamina propria, RFP+

cells in the palate CT were less dense (Fig 1D).
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Fig 1. A-D: Single-plane laser-scanning confocal photomicrographs illustrate the distribution of RFP+

cells in mature taste buds in young adult (8 week) P0-Cre/RFPmice. Taste bud cells in lingual fungiform
(A), foliate (B), circumvallate (C) papillae and soft palate (D) were labeled by immunoreactivity of a pan-taste
cell marker Keratin 8 (Krt8, green). Tissue sections were counterstained with DAPI (blue) to stain the nuclei of
all cells. White dotted lines demarcate the epithelium from underlying connective tissue with short arrows
pointing to connective tissue. Green dots in A and D bracket taste buds. P0-Cre driven RFP+ cells were
abundantly distributed in taste buds and underlying lamina propria of the tongue and soft palate. No RFP+

cells were seen in the surrounding epithelium (arrowheads) of taste buds. Scale bars: 20 μm for all images. E:
Histogram shows the average (x̄±SD, n = 3) of RFP+Krt8+ as a proportion of total Krt8+ taste bud cell profiles
in fungiform, foliate and circumvallate papillae in 8-week-old mice. F: Data from 3 mice for each stage (2, 4, 8
and 16 week) are represented as box plot of median±percentile. The diamond within each box represents the
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The abundant distribution of P0-Cre/RFP labeled cells in taste buds and underlying CT, in
the absence of labeled surrounding epithelial cells suggests that a large population of taste bud
cells has the same origin as the underlying CT, which is primarily from cranial neural crest
(NC).

Proportion and distribution of P0-Cre/RFP labeled cells in mature taste buds. To eval-
uate the contribution of underlying CT-originating cells (potentially NC) to taste buds in a
quantitative manner, we examined the proportion of P0-Cre labeled taste cell profiles in three
types of taste papillae, i.e., fungiform, foliate, and circumvallate. At week 8, the percentages of
RFP+ taste bud cell profiles versus total Krt8+ cell profiles were 29±10% (fungiform), 39±14%
(foliate) and 26±4% (circumvallate) (Fig 1E). No statistically significant differences in the pro-
portions of RFP+ taste bud cells were found in the three types of taste papillae (F(2,6) = 1.47,
P = 0.30).

Each of the fungiform taste papillae in mouse tongue contains a single taste bud that may be
tracked in serial sections which enables us to examine the proportion of RFP+ cells in individ-
ual taste buds. Fungiform taste buds were analyzed across a broad range of stages, i.e., taste bud
not fully mature at postnatal week 2 (S3A Fig), mature at week 4 (S3B Fig), young adult at
week 8 (Fig 1A) and mature adult at week 16 (S3C Fig). Consistent with the observations in
young adult (8 weeks) P0-Cre/RFPmice (Fig 1A), the distribution of P0-Cre labeled RFP+ cells
in fungiform taste buds was concurrent with extensive labeling in the underlying CT in young
pups (week 2–4) and mature adult (week 16) mice (S3A, S3B and S3C Fig). Again, no RFP+

cells were seen in the tongue epithelium (arrowheads) outside of the taste buds.
Throughout all stages used (week 2, 4, 8, 16; n = 3 per stage), 88–96% of fungiform taste

buds contained RFP+ cells. However there was considerable variability in the proportion of
RFP+ taste bud cells among taste buds for each mouse at all stages (Fig 1F, median±percentile
plots). At week 2 and 4, 5% of buds were fully labeled, and over 30% of taste buds were more
than 50% labeled with RFP+ taste bud cells. A small proportion (4%) of taste buds had no RFP+

cells at weeks 2–4. In adult mice (8–16 weeks), 83% of examined taste buds had up to half of
taste bud cells labeled with RFP; no taste buds were fully labeled, and 12% were not labeled at
all. At week 2, 4, 8, 16, RFP+ fungiform taste bud cell profiles comprised 39±10 (x̄±SD), 34±14,
29±10, and 24±5% of total Krt8+ cell profiles respectively (Fig 1F). No statistically significant
difference was found among the four stages (F(3,8) = 2.43, P = 0.14).

Type I, II, III taste cells were labeled by P0-Cre in lingual and palatal taste buds. Taste
buds include distinct cell types with proposed functional roles. To determine whether P0-Cre
labeled cells contribute to specific taste bud cell type(s), we used specific markers to label differ-
entiated taste bud cells, i.e., NTPDaseII for type I, α-Gustducin for type II, and SNAP25 for
type III cells, in adult (8–16 week) P0-Cre/RFPmice, in which the distribution and proportion
of labeled taste bud cells were stable at these stages (Fig 1F). Consistently, labeled RFP+ cells
were found in taste buds and underlying CT. Co-localization of RFP labels with markers for
type I, II and III taste cells was found in all three types of lingual taste papillae and in the soft
palate in adult P0-Cre/RFPmice (Fig 2, arrowheads).

Type I, II, III cells are within taste buds in different proportions, with type I the most and III
the least abundant [31]. Consistently, NTPDaseII labeled the majority of taste bud cells and
some nerve fibers in the underlying CT (Fig 2A). Co-localization of RFP signals and NTPDa-
seII immunoproducts was evident in taste buds. However, ubiquitous NTPDaseII immunore-
activity in the taste buds made it difficult to distinguish the RFP+NTPDaseII+ cells from the

average (n = 3) of RFP+Krt8+ double labeled versus total Krt8+ taste bud cell profiles in fungiform papillae at
different stages.

doi:10.1371/journal.pone.0146475.g001
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RFP+NTPDaseII− cells. The type II (α-Gustducin+) (Fig 2B) and type III (SNAP25+) (Fig 2C)
cells were distinctly labeled and easily identifiable so these cells were used for further quantifi-
cation of cell profiles.

Proportions of RFP+ specific taste cell types in fungiform, foliate and circumvallate papillae,
relative to total P0-Cre labeled RFP+ cell profiles (column A) or relative to the type II or III
cells (column B) are shown in Table 1. The percentages were calculated based on the number
of all the counted cells from different mice. The percentage of labeled RFP+NTPDaseII+ relative
to RFP+ taste bud cells was an extrapolation from quantification analysis of type II and III cell
labeling.

Fig 2. P0-Cre labeled type I, II, III taste bud cells. In lingual and palatal taste buds of adult P0-Cre/RFP
mice, RFP+ signals were co-localized with markers for specific taste cell types (white arrowheads), i.e.,
NTPDaseII for type I cells (A), α-Gustducin for type II cells (B) and SNAP25 for type III cells (C). White dotted
lines demarcate the epithelium from underlying connective tissue. Scale bar: 20 μm for all images (single
plane laser-scanning confocal).

doi:10.1371/journal.pone.0146475.g002
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Variability was observed in the three types of taste papillae. Of all RFP+ cell profiles in lin-
gual taste buds, 61% were type I (extrapolation), 13% type II and 26% type III cells (Table 1,
column A). Relative to type II or III cell profiles (Table 1, column B), the percentages of dou-
ble-labeled cells were also obtained. The type III cells exhibited a high percentage of RFP+ cell
profiles. In overall quantified lingual taste buds, 42% of type III cells were labeled with RFP sig-
nals, in contrast to a 12% of type II RFP+ cells.

Dermo1-Cre also labeled mature taste bud cells and underlying
connective tissue in the tongue and soft palate
The abundant distribution of P0-Cre/RFP labeled cells in taste buds and underlying CT in the
absence of labeled surrounding epithelium strongly suggests a novel perspective regarding taste
bud cell origin, i.e., a population of taste bud cells share the same origin as the underlying mes-
enchymal CT. To confirm this significant finding, we used another independent mouse model,
Dermo1-Cre [27], in which Cre is driven by the endogenous promoter of Dermo1 that is
expressed in the mesenchyme of embryonic tongue [28].

Our data from the Dermo1-Cre/RFPmodel were consistent with our observations from
P0-Cre/RFPmice for: (1) the abundant distribution of labeled taste bud cells and underlying
CT (Fig 3) in the absence of labeled surrounding epithelial cells (Fig 3A, arrowheads); and (2)
the co-localization of RFP signals with markers for differentiated type I, II, III taste bud cells
(Fig 4, arrowheads).

In brief, a large population of Dermo1-Cre labeled RFP+ cells was seen in mature taste buds
and co-localized with the pan taste cell marker Krt8 in lingual taste papillae, i.e., in fungiform,
foliate and circumvallate, and soft palate (Fig 3). Of note, the epithelial cells that surround taste
buds were not labeled (Fig 3A, arrowheads). Instead, bright RFP+ cells were widely distributed
in the underlying CT, and were especially dense in the lamina propria and CT core of taste
papillae. Moreover, RFP labels were co-localized with markers for all three differentiated taste
cell types (Fig 4, arrowheads), i.e., NTPDaseII for type I, α-Gustducin for type II, and SNAP25
for type III.

Vimentin-CreER labeled cells were distributed within taste buds after
tamoxifen administration
To demonstrate that the underlying CT cells continuously contribute to the renewal of mature
taste buds, we used an inducible Cremouse model, Vimentin-CreER in which Cre activity was
driven by the endogenous promoter of Vimentin that is expressed in the tongue CT.

Table 1. Proportion of P0-Cre/RFP labeled specific type (I, II, III)of taste bud cell profiles.

P0-Cre/RFP labeled taste bud cells A: % (vs. n = number of RFP+ taste bud cells) B: % (vs. n = number of
specific type taste cells)

(counted separately for II and IIIfrom different sets of
sections)

(α-Gustducin+ or SNAP25+)

I (extrapolation) II (n) III (n) II (n) III (n)

Fungiform 60 30 (183) 10 (423) 21 (255) 48 (88)

Foliate 64 7 (365) 29 (918) 8 (333) 63 (431)

Circumvallate 58 12 (479) 30 (1039) 10 (541) 33 (954)

Overall in lingual taste buds 61 13 (1027) 26 (2380) 12 (1129) 42 (1473)

doi:10.1371/journal.pone.0146475.t001
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In adult wild type mice, Vimentin immunoreactivity was widely seen in the underlying CT
of the tongue but not in taste buds nor in the surrounding epithelium (Fig 5A). Double immu-
nolabeled Vimentin+Ki67+ cells were observed in a small population of connective tissue cells
adjacently below the taste buds (Fig 5B, arrowheads). However, in the adult (3-month) Vimen-
tin-CreER/mGFPmice, mGFP+ cells were apparently distributed within lingual taste buds in
fungiform and circumvallate (Fig 5C) papillae in addition to the underlying CT cells at 12 days
after the first tamoxifen treatment. In the foliate taste buds, mGFP+ cells were not as clear as in

Fig 3. Dermo1-Cre labeled abundant population of taste bud cells. In adult Dermo1-Cre/RFPmice, RFP+

cells were abundantly distributed in mature taste buds labeled by Krt8 (green) and extensive in the underlying
connective tissue of lingual fungiform (A), foliate (B), circumvallate (C) papillae and soft palate (D). Sections
were counterstained with DAPI (blue). White dotted lines demarcate the epithelium from underlying
connective tissue with arrows pointing to the connective tissue. Green dotted circles outline Fungiform and
Soft palate taste buds. Arrowheads in A point to the unlabeled RFP− epithelial cells outside of the taste bud.
Scale bar: 20 μm for all images (single plane laser-scanning confocal).

doi:10.1371/journal.pone.0146475.g003

Connective Tissue Contributes to Taste Buds

PLOS ONE | DOI:10.1371/journal.pone.0146475 January 7, 2016 10 / 18



fungiform and circumvallate (data not shown). Again, the epithelial cells surrounding the taste
buds were not labeled (Fig 5C, Fungiform, arrowheads).

Discussion

A population of taste bud cells originate from underlying connective
tissue in tongue and soft palate
Mammalian taste bud cells, specialized gustatory sensory organs that primarily reside in the epi-
thelium of lingual taste papillae and soft palate [32], have both epithelial and neuronal features.

Fig 4. Dermo1-Cre labeled all three types (I, II, III) of taste bud cells in adult mice.RFP+ signals were co-
localized with markers for specific taste cell types (white arrowheads), i.e., NTPDaseII for type I cells, α-
Gustducin for type II cells and SNAP25 for type III cells in the lingual (A, B, C) and palatal (D) taste buds.
White dotted lines demarcate the epithelium from underlying connective tissue. Scale bar: 20 μm for all
images (single plane laser-scanning confocal).

doi:10.1371/journal.pone.0146475.g004
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It has been widely accepted that taste bud cells are derived from the local surrounding epithe-
lium [3–7, 33], which is distinctive among most, if not all, other sensory organs that have a neu-
ral origin including neural crest (NC). Here, we report a previously unrecognized origin of taste
bud cells, i.e., the adjacent underlying connective tissue (CT), potentially of NC origin based on

Fig 5. Derivation of taste bud cells from Vimentin-expressing cells in the underlying connective
tissue. A, B: In adult wild type mice, the immunoreactivity of Vimentin (Vim, green) was extensively
distributed in the tongue connective tissue but not in the epithelium or Krt8+ taste bud cells (red in A). A
subpopulation of Vimentin+ cells were also labeled with proliferating cell marker Ki67 (red in B, arrowheads).
C: In adult Vimentin-CreER/mGFPmouse, tamoxifen induced mGFP+ cells were seen within the Krt8 (red)
labeled taste buds in fungiform and circumvallate papillae in addition to the extensive distribution of mGFP+

cells in the underlying connective tissue. White dots demarcate the border between epithelium and lamina
propria with arrows pointing to the connective tissues. Red dotted lines in A and C encircle the taste buds.
Arrowheads in C (Fungiform) point to the unlabeled mGFP− epithelial cells. Scale bars: 20 μm for all images
(fluorescent light microphotographs in A and single plane confocal images in B and C).

doi:10.1371/journal.pone.0146475.g005
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multiple lines of evidence from the present study: (1) concurrent distribution of labeled cells in
taste buds and underlying CT in P0-Cre/RFP and Dermo1-Cre/RFPmice; (2) distribution of
labeled taste bud cells in the absence of labeling in the surrounding epithelium; (3) distribution
of Vimentin+ CT cell derived cells (Vimentin-CreER/mGFP) in the taste buds. Furthermore,
distribution of Vimentin-CreER labeled cells in taste buds in adult mice also confirmed the con-
tinuous contribution of CT cells to the renewal of mature taste buds. These novel findings bring
new perspective and better understanding of the precursor sources for taste bud formation and
renewal, i.e., from both the underlying CT and the surrounding epithelium.

The distribution of Vimentin immunoreactivity in the CT cells versus absence in taste buds
in mouse tongue is similar to that in human but distinct from that in chicken, i.e., sustained
Vimentin expression in both the taste bud cells and underlying CT [34]. Witt et al. [34] pro-
posed that “the mechanisms of taste bud differentiation from source tissues may differ among
vertebrates of different taxa”. However, our data support the idea that similarly to chicken, the
mammalian CT cells contribute to taste buds, and that differently from chicken, the mamma-
lian CT cells lose the Vimentin expression after their migration and differention to taste bud
cells.

It is noteworthy that the absence of P0-Cre driven RFP labeling in the tongue epithelium
outside of the taste buds is different from our observation in the previous report (Liu et al.,
2012) using the R26R/lacZ reporter in embryos and young postnatal animals (P1-10), i.e.,
X-Gal stained clusters of epithelial cells in the interpapillary space. We believe that the single-
plane confocal microscopy in the present study provides a more accurate analysis of the distri-
bution of RFP+ signals driven by P0-Cre. Similar distributions were observed in the Der-
mo1-Cre and Vimentin-CreERmouse models.

Derivation of lingual and palatal mesenchyme/connective tissue
The mammalian tongue and soft palate contain striated muscles that are compartmentalized
by CT with traversing blood vessels and nerve fibers. It is well known that lingual and palatal
striated muscle cells are derived from mesoderm [21, 35] and that the CT cells are largely
derived from cranial NC [21, 36]. In both P0-Cre/RFP and Dermo1-Cre/RFPmouse lines, the
mesoderm derived muscles were not labeled indicating that the labeled CT and taste bud cells
are most likely from NC.

Important contributions of NC cells have been demonstrated in the formation of mamma-
lian craniofacial structures, including in the branchial arches [37, 38] where the tongue forms.
Consistently in the previous reports [23, 37] and present study, labeled cells were extensively
distributed in the tongue mesenchyme/CT across a broad range of stages (from early embryos
to mature adult mice) using multiple reporters (lacZ, GFP, R26-tdTomato) driven by Cre activ-
ity under the control of different promoters (Wnt1-Cre, P0-Cre, Dermo1-Cre) to map NC
derivatives.

Cranial NC plays important roles in the tongue formation. It has been shown that the cra-
nial NC derived cells closely interact with myogenic progenitors in tongue myogenesis and
morphogenesis through multiple signaling pathways, e.g., Dlx, TGFb, FGF [21]. In the present
study, we demonstrated a novel role of mesenchymal/CT cells that are primarily from cranial
NC, i.e., migration and differentiation to taste bud cells. CT are comprised of multiple cell
types that include fibroblasts, intrinsic ganglion neurons, blood vessels, and Schwann cells that
myelinate nerve fibers. Schwann cells, derived from NC, are important for the development
and myelination of peripheral nerves. It has been reported recently that tissue injury can lead
to the dedifferentiation of Schwann cells and then differentiation to neurons [39, 40]. Further
studies are needed to characterize the specific cell types in the CT that contribute to taste buds.
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Intriguingly,Wnt1-Cre labeled cells are extensive in the tongue mesenchyme but rare in the
early taste buds (17). It is too early to provide a reasonable speculation for the profound differ-
ences between P0-Cre and Dermo1-Cre versusWnt1-Cre in labeling taste bud cells, i.e., abun-
dant in both P0-Cre and Dermo1-Cre versus rare inWnt1-Cre [23]. Inconsistencies in labeling
NC derivatives in other organs with different Cre driver models have also been reported pre-
sumably because of the variation in labeled NC cell populations [41–43]. Indeed, the estab-
lished mouse lines for mapping NC derivatives do not label all NC derived cells, or label NC
derived cells exclusively from other cell lineages.Wnt1-Cre, widely used and taken as a “gold
standard” for labeling NC derivatives, has been found recently to cause ectopic activation of
Wnt signaling and defects of midbrain development [44]. It is not clear whether the alterations
caused by theWnt1-Cre transgene lead to the absence of taste bud labeling. A detailed exami-
nation of cell types that are labeled byWnt1-Cre and newly developedWnt1-Cre2 [44] versus
P0-Cre and Dermo1-Cremay lead to a better understanding of which cell type(s) in the under-
lying CT contribute to taste buds.

Proportion of taste bud cells derived from underlying connective tissue
Taste buds are primarily located in the tongue and soft palate within the oral cavity in mice
[32]. A significant contribution of CT to taste buds in both tongue and soft palate is supported
by the abundant distribution of P0-Cre and Dermo1-Cre labeled cells in taste buds along with
the underlying CT in all three types of lingual taste papillae and in soft palate. By tracking indi-
vidual fungiform taste buds, our quantitative analysis showed that the majority of fungiform
taste buds, 88% in adult and 96% in young mice, are comprised of labeled cells that share the
same origin of underlying CT. The average proportions of RFP+ taste bud cell profiles ranged
from 24–39%. Our data suggest that a significant population of taste bud cells are derived from
the underlying CT that is of NC origin.

Of note, P0-Cre and Dermo1-Cre labeled cells were sustained in mature taste buds at 16
weeks, indicating the existence of stem/progenitor cells in the CT for taste bud renewal and
maintenance. This idea is supported by our observation that a small proportion of Vimentin+

cells in the CT core of taste papillae are also positive for the proliferating marker Ki67. Indeed,
labeling of taste bud cells with Vimentin-CreER in adult mice supports the hypothesis that
underlying CT cells contribute to the continuous turnover of taste bud cells that have an aver-
age half-life of 8–12 days [22]. Mii et al [45] recently reported the distribution of nestin-
expressing multipotent stem cells in the CT core of fungiform papillae. These cells co-express
the NC cell marker p75 and are immediately below the taste buds. Combined with our data, we
propose that NC derived stem cells exist in the underlying CT and contribute to the renewal of
taste buds.

Types of taste bud cells derived from underlying connective tissue
Taste bud cells are heterogeneous structurally (types I, II, III, IV) [8–10] and functionally (epi-
thelial-, neuronal-, and glial-like) [11–14] which suggests distinct lineages of taste bud cells
[15]. It is well known that type I (glial-like) cells are the most abundant and serve as supporting
cells; whereas type II cells are less abundant and responsible for transducing sweet, bitter and
umami taste stimuli through a non-traditional contact with the sensory nerve endings. Type III
(neuronal-like) cells are the least abundant cell type and important for sour taste [31, 46].

Specific markers for the three types of differentiated taste bud cells are useful in defining the
contribution of underlying CT to specific taste bud cell type(s), e.g., NTPDaseII for type I [47],
α-Gustducin for type II [48, 49], SNAP25 for type III [50]. The observation that markers for
every differentiated taste cell type were co-localized with RFP signals in both P0-Cre/RFP and
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Dermo1-Cre/RFPmouse lines demonstrates that the underlying CT contributes to all types of
differentiated taste bud cells, i.e., type I, II and III in all three types of lingual taste papillae and
soft palate.

Our quantitative data for the composition of overall P0-Cre/RFP+ cells, i.e., 61% type I
(extrapolation), 13% type II, and 26% type III, indicate an uneven differentiation of taste cell
types from taste bud progenitors in the underlying CT, a distribution that favors neuronal-like
type III cells. Indeed, a higher percentage (42%) of type III cell profiles in lingual taste buds
were labeled with P0-Cre/RFP versus 12% RFP+ type II. This supports the idea that the taste
bud progenitors in the underlying CT have a neural origin, more likely NC, and tend to differ-
entiate toward neuronal cells, e.g., type III taste bud cells.

Dual origin of taste bud cells from both surrounding epithelium and
underlying connective tissue
In light of previous reports [5, 6, 18, 19, 23, 34, 51] and our present study, we propose a dual
origin of taste bud cells from both the surrounding epithelium, i.e., K14+K5+Trp63+Sox2+(low)
Lgr5+ basal cells, and the underlying CT, i.e., Vimentin+ cells that are most likely derived from
NC. Although quantitative data for contributions of K14-CreER labeled cells to taste buds were
not provided in the report, different distribution patterns/types of taste bud labeling were
observed, i.e., fully, partially, or absent K14-CreER labeling (6). Combined with our fate map-
ping analysis in the present study, the data support a compatible distribution of taste bud cells
from both origins, i.e., the majority of taste buds have a mixed population with both origins,
and a small population of taste buds are primarily from either surrounding epithelium or
underlying CT.

Significantly, our data using three transgenic mouse lines bring forward a novel progenitor
source of taste bud cells. It is important to understand how this population of CT cells can be
regulated to migrate and differentiate to taste bud cells, and how these cells interact with the
surrounding epithelium for the proper formation and renewal of taste buds. Our finding that
the underlying CT contributes to taste bud cells provides a new insight into taste bud formation
and renewal.

Supporting Information
S1 Fig. Representative photomicrographs taken with a fluorescent light microscope illus-
trates the absence of RFP+ cells in all the P0-Cre(-)/RFP(+)mouse tissues examined, i.e.,
fungiform, foliate, circumvallate and soft palate. Taste bud cells were labeled with Krt8
immunoreactivity (green) and sections were counterstained with DAPI (blue). Scale bar:
50 μm for all images.
(TIF)

S2 Fig. Distribution of P0-Cre/RFP labeled RFP+ cells in a fungiform papilla (A) and the
soft palate (B). Taste bud cells (encircled by green dots) were labeled with Krt8 immunoreac-
tivity (green) and sections were counterstained with DAPI (blue). White dots demarcate the
epithelium from connective tissue pointed by the short arrows. White arrowheads point to the
unlabeled epithelium outside of taste buds, i.e., in between-papilla lingual or between-bud pala-
tal epithelium. RFP signals were not observed in striated muscle cells (long arrows). Scale bar:
40 μm for all images (single plane laser-scanning confocal).
(TIF)

S3 Fig. Distribution of P0-Cre/RFP labeled RFP+Krt8+ taste bud cells in fungiform taste
buds and underlying connective tissue at week 2 (A), 4 (B) and 16 (C).White dots demarcate
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the epithelium from connective tissue. Short arrows point to the underlying connective tissue.
Green dots encircle the taste buds. White arrowheads point to the unlabeled epithelium outside
of taste buds in the fungiform papillae. Scale bar: 20 μm for all images.
(TIF)

Acknowledgments
We give thanks to Dr. Kenichi Yamamura for providing P0-Cremice; to Dr. Freda Miller for
providing Dermo1-Cre tissues for a pilot study; to Sehar Lalani for technical support in cryostat
sectioning and immunohistochemistry; and to Dr. Sara Corson for English editing. This study
was supported by the National Institutes of Health (grant number R00DE021054 to YK,
5U54CA163111-05 to RFS, R01DC000456 to CMM, R01DE020843 to YM, R03 DC009055
and R01 DC012308 to HXL).

Author Contributions
Conceived and designed the experiments: KB NV IM YK SS RFS CMM YMHXL. Performed
the experiments: KB NV IM SS YMHXL. Analyzed the data: KB NV IM SS YMHXL. Contrib-
uted reagents/materials/analysis tools: YK SS RFS YMHXL. Wrote the paper: KB NV IM YK
SS RFS CMM YMHXL.

References
1. Noden D. Vertebrate Craniofacial Development: The Relation between Ontogenetic Process and Mor-

phological Outcome; pp. 190–207. Brain Behav Evol. 1991; 38(4–5):190–207. PMID: 1777804

2. Noden DM. Spatial integration among cells forming the cranial peripheral nervous system. J Neurobiol.
1993; 24(2):248–61. PMID: 8445390

3. Farbman AI. Fine structure of the taste bud. J Ultrastruct Res. 1965; 12(3):328–50.

4. Farbman AI. Electron microscope study of the developing taste bud in rat fungiform papilla. Dev Biol.
1965; 11(1):110–35.

5. Okubo T, Clark C, Hogan BL. Cell lineage mapping of taste bud cells and keratinocytes in the mouse
tongue and soft palate. Stem Cells. 2009; 27(2):442–50. doi: 10.1634/stemcells.2008-0611 PMID:
19038788

6. Stone LM, Finger TE, Tam P, Tan S-S. Taste receptor cells arise from local epithelium, not neurogenic
ectoderm. Proc Natl Acad Sci USA. 1995; 92(6):1916–20. PMID: 7892199

7. Stone LM, Finger TE. Mosaic analysis of the embryonic origin of taste buds. Chem senses. 1994; 19
(6):725–35. PMID: 7735850

8. Murray RG. Cellular relations in mouse circumvallate taste buds. Microsc Res Tech. 1993; 26(3):209–
24. PMID: 8241560

9. Pumplin DW, Yu C, Smith DV. Light and dark cells of rat vallate taste buds are morphologically distinct
cell types. J Comp Neurol. 1997; 378(3):389–410. PMID: 9034899

10. Yee CL, Yang R, Böttger B, Finger TE, Kinnamon JC. “Type III” cells of rat taste buds: Immunohisto-
chemical and ultrastructural studies of neuron‐specific enolase, protein gene product 9.5, and seroto-
nin. J Comp Neurol. 2001; 440(1):97–108. PMID: 11745610

11. Beidler LM, Smallman RL. Renewal of cells within taste buds. J Cell Biol. 1965; 27(2):263–72. PMID:
5884625

12. Gao N, Lu M, Echeverri F, Laita B, Kalabat D, Williams ME, et al. Voltage-gated sodium channels in
taste bud cells. BMC Neurosci. 2009; 10(1):20.

13. Lawton DM, Furness DN, Lindemann B, Hackney CM. Localization of the glutamate–aspartate trans-
porter, GLAST, in rat taste buds. Eur J Neurosci. 2000; 12(9):3163–71. PMID: 10998100

14. Vandenbeuch AK, Sue C. Why do taste cells generate action potentials?. Journal of biology. 2009;
8:42. doi: 10.1186/jbiol138 PMID: 19439032

15. Stone LM, Tan S-S, Tam PP, Finger TE. Analysis of cell lineage relationships in taste buds. J Neurosci.
2002; 22(11):4522–9. PMID: 12040059

Connective Tissue Contributes to Taste Buds

PLOS ONE | DOI:10.1371/journal.pone.0146475 January 7, 2016 16 / 18

http://www.ncbi.nlm.nih.gov/pubmed/1777804
http://www.ncbi.nlm.nih.gov/pubmed/8445390
http://dx.doi.org/10.1634/stemcells.2008-0611
http://www.ncbi.nlm.nih.gov/pubmed/19038788
http://www.ncbi.nlm.nih.gov/pubmed/7892199
http://www.ncbi.nlm.nih.gov/pubmed/7735850
http://www.ncbi.nlm.nih.gov/pubmed/8241560
http://www.ncbi.nlm.nih.gov/pubmed/9034899
http://www.ncbi.nlm.nih.gov/pubmed/11745610
http://www.ncbi.nlm.nih.gov/pubmed/5884625
http://www.ncbi.nlm.nih.gov/pubmed/10998100
http://dx.doi.org/10.1186/jbiol138
http://www.ncbi.nlm.nih.gov/pubmed/19439032
http://www.ncbi.nlm.nih.gov/pubmed/12040059


16. Thirumangalathu S, Harlow DE, Driskell AL, Krimm RF, Barlow LA. Fate mapping of mammalian
embryonic taste bud progenitors. Development. 2009; 136(9):1519–28. doi: 10.1242/dev.029090
PMID: 19363153

17. Miura H, Scott JK, Harada S, Barlow LA. Sonic hedgehog–expressing basal cells are general post
mitotic precursors of functional taste receptor cells. Dev Dyn. 2014; 243(10):1286–97. doi: 10.1002/
dvdy.24121 PMID: 24590958

18. Liu HX, Ermilov A, Grachtchouk M, Li L, Gumucio DL, Dlugosz AA, et al. Multiple Shh signaling centers
participate in fungiform papilla and taste bud formation and maintenance. Dev Biol. 2013; 382(1):82–
97. doi: 10.1016/j.ydbio.2013.07.022 PMID: 23916850

19. Yee KK, Li Y, Redding KM, Iwatsuki K, Margolskee RF, Jiang P. Lgr5 EGFPMarks Taste Bud Stem/
Progenitor Cells in Posterior Tongue. Stem Cells. 2013; 31(5):992–1000. doi: 10.1002/stem.1338
PMID: 23377989

20. Danielian PS, Muccino D, Rowitch DH, Michael SK, McMahon AP. Modification of gene activity in
mouse embryos in utero by a tamoxifen-inducible form of Cre recombinase. Curr Biol. 1998; 8
(24):1323–S2. PMID: 9843687

21. Parada C, Han D, Chai Y. Molecular and cellular regulatory mechanisms of tongue myogenesis. J Dent
Res. 2012; 91(6):528–35. doi: 10.1177/0022034511434055 PMID: 22219210

22. Perea-Martinez I, Nagai T, Chaudhari N. Functional cell types in taste buds have distinct longevities.
PloS One. 2013; 8(1):e53399. doi: 10.1371/journal.pone.0053399 PMID: 23320081

23. Liu H-X, Komatsu Y, Mishina Y, Mistretta CM. Neural crest contribution to lingual mesenchyme, epithe-
lium and developing taste papillae and taste buds. Dev Biol. 2012; 368(2):294–303. doi: 10.1016/j.
ydbio.2012.05.028 PMID: 22659543

24. Feltri ML, D’Antonio M, Quattrini A, Numerato R, Arona M, Previtali S, et al. A novel P0 glycoprotein
transgene activates expression of lacZ in myelin‐forming Schwann cells. Eur J Neurosci. 1999; 11
(5):1577–86. PMID: 10215910

25. Kawakami M, Umeda M, Nakagata N, Takeo T, Yamamura K-i. Novel migrating mouse neural crest cell
assay system utilizing P0-Cre/EGFP fluorescent time-lapse imaging. BMC Dev Biol. 2011; 11(1):68.

26. Yamauchi Y, Abe K, Mantani A, Hitoshi Y, Suzuki M, Osuzu F, et al. A novel transgenic technique that
allows specific marking of the neural crest cell lineage in mice. Dev Biol. 1999; 212(1):191–203. PMID:
10419695

27. Yu K, Xu J, Liu Z, Sosic D, Shao J, Olson EN, et al. Conditional inactivation of FGF receptor 2 reveals
an essential role for FGF signaling in the regulation of osteoblast function and bone growth. Develop-
ment. 2003; 130(13):3063–74. PMID: 12756187

28. Li L, Cserjesi P, Olson EN. Dermo-1: a novel twist-related bHLH protein expressed in the developing
dermis. Dev Biol. 1995; 172(1):280–92. PMID: 7589808

29. Troeger JS, Mederacke I, Gwak GY, Dapito DH, Mu X, Hsu CC, et al. Deactivation of hepatic stellate
cells during liver fibrosis resolution in mice. Gastroenterol. 2012; 143(4):1073–83. e22.

30. Liu H-X, Grosse AS, Iwatsuki K, Mishina Y, Gumucio DL, Mistretta CM. Separate and distinctive roles
for Wnt5a in tongue, lingual tissue and taste papilla development. Dev Biol. 2012; 361(1):39–56. doi:
10.1016/j.ydbio.2011.10.009 PMID: 22024319

31. Chaudhari N, Roper SD. The cell biology of taste. J Cell Biol. 2010; 190(3):285–96. doi: 10.1083/jcb.
201003144 PMID: 20696704

32. Smith DV, Margolskee RF. Making sense of taste. Scientific American. 2001; 284(3):32–9. PMID:
11234504

33. Farbman AI, Mbiene JP. Early development and innervation of taste bud‐bearing papillae on the rat ton-
gue. J Comp Neurol. 1991; 304(2):172–86. PMID: 2016415

34. Witt M, Reutter K, Ganchrow D, Ganchrow JR. Fingerprinting taste buds: intermediate filaments and
their implication for taste bud formation. Philos Trans R Soc London B. 2000; 355(1401):1233–7.

35. Tzahor E. Head Muscle Development. Vertebrate Myogenesis: Springer; 2015. p. 123–42.

36. La Noce M, Mele L, Tirino V, Paino F, De Rosa A, Naddeo P, et al. Neural crest stem cell population in
craniomaxillofacial development and tissue repair. Eur Cell Mater. 2014; 28:348–57. PMID: 25350250

37. Chai Y, Maxson RE. Recent advances in craniofacial morphogenesis. Dev Dyn. 2006; 235(9):2353–
75. PMID: 16680722

38. Cordero DR, Brugmann S, Chu Y, Bajpai R, Jame M, Helms JA. Cranial neural crest cells on the move:
their roles in craniofacial development. Am J Med Genet A. 2011; 155(2):270–9.

39. Dyachuk V, Furlan A, Shahidi MK, Giovenco M, Kaukua N, Konstantinidou C, et al. Parasympathetic
neurons originate from nerve-associated peripheral glial progenitors. Science. 2014; 345(6192):82–7.
doi: 10.1126/science.1253281 PMID: 24925909

Connective Tissue Contributes to Taste Buds

PLOS ONE | DOI:10.1371/journal.pone.0146475 January 7, 2016 17 / 18

http://dx.doi.org/10.1242/dev.029090
http://www.ncbi.nlm.nih.gov/pubmed/19363153
http://dx.doi.org/10.1002/dvdy.24121
http://dx.doi.org/10.1002/dvdy.24121
http://www.ncbi.nlm.nih.gov/pubmed/24590958
http://dx.doi.org/10.1016/j.ydbio.2013.07.022
http://www.ncbi.nlm.nih.gov/pubmed/23916850
http://dx.doi.org/10.1002/stem.1338
http://www.ncbi.nlm.nih.gov/pubmed/23377989
http://www.ncbi.nlm.nih.gov/pubmed/9843687
http://dx.doi.org/10.1177/0022034511434055
http://www.ncbi.nlm.nih.gov/pubmed/22219210
http://dx.doi.org/10.1371/journal.pone.0053399
http://www.ncbi.nlm.nih.gov/pubmed/23320081
http://dx.doi.org/10.1016/j.ydbio.2012.05.028
http://dx.doi.org/10.1016/j.ydbio.2012.05.028
http://www.ncbi.nlm.nih.gov/pubmed/22659543
http://www.ncbi.nlm.nih.gov/pubmed/10215910
http://www.ncbi.nlm.nih.gov/pubmed/10419695
http://www.ncbi.nlm.nih.gov/pubmed/12756187
http://www.ncbi.nlm.nih.gov/pubmed/7589808
http://dx.doi.org/10.1016/j.ydbio.2011.10.009
http://www.ncbi.nlm.nih.gov/pubmed/22024319
http://dx.doi.org/10.1083/jcb.201003144
http://dx.doi.org/10.1083/jcb.201003144
http://www.ncbi.nlm.nih.gov/pubmed/20696704
http://www.ncbi.nlm.nih.gov/pubmed/11234504
http://www.ncbi.nlm.nih.gov/pubmed/2016415
http://www.ncbi.nlm.nih.gov/pubmed/25350250
http://www.ncbi.nlm.nih.gov/pubmed/16680722
http://dx.doi.org/10.1126/science.1253281
http://www.ncbi.nlm.nih.gov/pubmed/24925909


40. Espinosa-Medina I, Outin E, Picard C, Chettouh Z, Dymecki S, Consalez G, et al. Parasympathetic
ganglia derive from Schwann cell precursors. Science. 2014; 345(6192):87–90. doi: 10.1126/science.
1253286 PMID: 24925912

41. Nakamura T, Colbert MC, Robbins J. Neural crest cells retain multipotential characteristics in the devel-
oping valves and label the cardiac conduction system. Cir Res. 2006; 98(12):1547–54.

42. Olaopa M, Zhou H-m, Snider P, Wang J, Schwartz RJ, Moon AM, et al. Pax3 is essential for normal car-
diac neural crest morphogenesis but is not required during migration nor outflow tract septation. Dev
Biol. 2011; 356(2):308–22. doi: 10.1016/j.ydbio.2011.05.583 PMID: 21600894

43. Wang S-K, Komatsu Y, Mishina Y. Potential contribution of neural crest cells to dental enamel forma-
tion. Biochem Biophys Res Commun. 2011; 415(1):114–9. doi: 10.1016/j.bbrc.2011.10.026 PMID:
22020075

44. Lewis AE, Vasudevan HN, O’Neill AK, Soriano P, Bush JO. The widely usedWnt1-Cre transgene
causes developmental phenotypes by ectopic activation of Wnt signaling. Dev Biol. 2013; 379(2):229–
34. doi: 10.1016/j.ydbio.2013.04.026 PMID: 23648512

45. Mii S, Amoh Y, Katsuoka K, Hoffman RM. Comparison of Nestin‐Expressing Multipotent Stem Cells in
the Tongue Fungiform Papilla and Vibrissa Hair Follicle. Journal of cellular biochemistry. 2014; 115
(6):1070–6. doi: 10.1002/jcb.24696 PMID: 24142339

46. Murray RG, Murray A. Relations and possible significance of taste bud cells. Contrib Sens Physiol.
1970; 5:47–95.

47. Bartel DL, Sullivan SL, Lavoie ÉG, Sévigny J, Finger TE. Nucleoside triphosphate diphosphohydrolase
2 is the ectoATPase of type I cells in taste buds. J Comp Neurol. 2006; 497(1):1–12. PMID: 16680780

48. Boughter JD Jr, Pumplin DW, Yu C, Christy RC, Smith DV. Differential expression of α-gustducin in
taste bud populations of the rat and hamster. J Neurosci. 1997; 17(8):2852–8. PMID: 9092606

49. Yang R, Tabata S, Crowley HH, Margolskee RF, Kinnamon JC. Ultrastructural localization of gustducin
immunoreactivity in microvilli of type II taste cells in the rat. J Comp Neurol. 2000; 425(1):139–51.
PMID: 10940948

50. Yang R, Crowley HH, Rock ME, Kinnamon JC. Taste cells with synapses in rat circumvallate papillae
display SNAP25 like immunoreactivity. J Comp Neurol. 2000; 424(2):205–15. PMID: 10906698

51. RenW, Lewandowski BC, Watson J, Aihara E, Iwatsuki K, Bachmanov AA, et al. Single Lgr5-or Lgr6-
expressing taste stem/progenitor cells generate taste bud cells ex vivo. Proc Natl Acad Sci USA. 2014;
111(46):16401–6. doi: 10.1073/pnas.1409064111 PMID: 25368147

Connective Tissue Contributes to Taste Buds

PLOS ONE | DOI:10.1371/journal.pone.0146475 January 7, 2016 18 / 18

http://dx.doi.org/10.1126/science.1253286
http://dx.doi.org/10.1126/science.1253286
http://www.ncbi.nlm.nih.gov/pubmed/24925912
http://dx.doi.org/10.1016/j.ydbio.2011.05.583
http://www.ncbi.nlm.nih.gov/pubmed/21600894
http://dx.doi.org/10.1016/j.bbrc.2011.10.026
http://www.ncbi.nlm.nih.gov/pubmed/22020075
http://dx.doi.org/10.1016/j.ydbio.2013.04.026
http://www.ncbi.nlm.nih.gov/pubmed/23648512
http://dx.doi.org/10.1002/jcb.24696
http://www.ncbi.nlm.nih.gov/pubmed/24142339
http://www.ncbi.nlm.nih.gov/pubmed/16680780
http://www.ncbi.nlm.nih.gov/pubmed/9092606
http://www.ncbi.nlm.nih.gov/pubmed/10940948
http://www.ncbi.nlm.nih.gov/pubmed/10906698
http://dx.doi.org/10.1073/pnas.1409064111
http://www.ncbi.nlm.nih.gov/pubmed/25368147

